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Many models of fractal growth patterrisuch as diffusion limited aggregation and dielectric breakdown
modelg combine complex geometry with randomness; this double difficulty is a stumbling block to their
elucidation. In this paper we introduce a wide class of fractal growth models with highly complex geometry but
without any randomness in their growth rules. The models are defined in terms of deterministic itineraries of
iterated conformal maps, generating the functibf?)(») which maps the exterior of the unit circle to the
exterior of ann-particle growing aggregate. The complexity of the evolving interfaces is fully contained in the
deterministic dynamics of the conformal mdg™(w). We focus attention on a class of growth models in
which the itinerary is quasiperiodic. Such itineraries can be approached via a series of rational approximants.
The analytic power gained is used to introduce a scaling theory of the fractal growth patterns and to identify
the exponent that determines the fractal dimension.

PACS numbd(s): 64.60.Ak

I. INTRODUCTION processes this method had been around for de¢&@dgsand
had been used extensively. For discrete particle growth such
In this paper we introduce a class of fractal growth pat-a language was developed recenfi8~11], showing that
terns in two dimensions, constructed in terms of the conforDLA in two dimensions can be grown by iterating stochastic
mal maps from the exterior of the unit circle to the exteriorconformal maps. In this paper we employ this language to
of the growing cluster. Until now most of the interesting define models in which the stochasticity is eliminated alto-
fractal growth models included randomness as an essentigether, to create deterministic iterations of conformal maps
aspect of the growth algorithms. Foremost in such modelsvith very interesting fractal growth properties. It is stressed
has been the diffusion limited aggregati@LA ) model that below that these models and their interesting properties are
was introduced in 1981 by Witten and Sandél. This natural extensions of the discrete conformal dynamics; it
model has been shown to underlie many pattern formingnay be very difficult to study such models with the tradi-
processes including dielectric breakdo}@], two-fluid flow  tional techniques in physical space.
[3], and electrochemical depositipfi]. The algorithm begins A central thesis of this paper is that the growth models
with fixing one particle at the center of coordinatesdn introduced below are simpler to understand than DLA, even
dimensions, and follows the creation of a cluster by releasinghough the fractal geometry exhibited does not seem simpler.
random walkers from infinity, allowing them to walk around Indeed, we present below some tools and concepts that allow
until they hit any particle belonging to the cluster. Upon us to explain why the growing cluster is fractal. We present
hitting they are attached to the growing cluster. The growtha scaling theory of the growing clusters, and identify the
probability for a random walker to hit the interface is known exponent that determines the fractal dimension. In Sec. Il we
as the “harmonic measure,” being the solution of the har-review the basic ideas of conformal dynamics as a method to
monic (Laplace equation with the appropriate boundary grow DLA and related growth patterns. In Sec. Il we make
conditions. The DLA model was generalized to a family ofthe point that within this framework randomness can be
models known collectively as dielectric breakdown modelseliminated from the discussion without changing the proper-
in which the density of growth probability is the density of ties of the fractal growth: one can have deterministic growth
the harmonic measure raised to a powd5]. For =1 one  rules with clusters that are indistinguishable from DLA. In
regains the DLA model; the intervaje (0,2) generates a Sec. IV we introduce fractal growth patterns that are ob-
family of growth patterns from compact to a single needle.tained from quasiperiodic itineraries of iterated conformal
For =0 one obtains a growth probability that is uniform maps. These itineraries are characterized by a winding num-
for all boundary points. This is known as the Eden modelber W. The growing clusters have complex geometries and a
that was introduced originally to describe the growth of can-different appearance for evel. We propose nevertheless
cer cells[6]. that all the quadratic irrationals belong to the same univer-
The fundamental difficulty of all these models is that theirsality class, and that the dimensions of their clusters are the
mathematical description calls for solving equations withsame. In Sec. V we consider rational approximaPt® to
boundary conditions on a complex, evolving interface. It isthe quadratic irrational winding numbeW. With rational
therefore advantageous to swap for a simple boundary, likapproximants the growth patterns cross over from a fractal
the unit circle, and to delegate the complexity to the dynamphase of growth to a one-dimensional starlike growth pat-
ics of the conformal map from the exterior of the unit circle tern. We argue that the analysis of the crossover as a function
to the exterior of the growing cluster. For continuous timeof Q provides us with a scaling theory, allowing the intro-
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duction of universality classes and the achievement of data
collapse. In Sec. VI we elucidate the mechanism for cross-
over from fractal to one-dimensional growth, and identify the

exponent that determines the fractal dimension. In Sec. VI
we summarize and offer final remarks regarding the avail-
ability of a renormalization group treatment and of the road , 4
ahead. 4% g 9y 5

Il. DISCRETE CONFORMAL DYNAMICS W A et
FOR FRACTAL GROWTH PATTERNS

The basic idea is to follow the evolution of the conformal
mapping® ™ (w) which maps the exterior of the unit circle
e'’ in the mathematicalv plane onto the complement of the
(simply connected cluster of n particles in the physicat
plane[9—11]. The unit circle is mapped to the boundary of
the E:I)ust_%r which is parzalg’netrized by the arc lengthz(s)
=0M(e'%). This mapd ™ (w) is made from compositions - -
of eler$1en)tary mapa&i),g, W) P br (W) =€y (e "W). ©®

FIG. 1. A DLA cluster,n=10".

OM(w) =D I(p, , (W)), (1)  The parametea is confined in the range0a<1, determin-
nen ing the shape of the bump. We emplay: 2/3 in this simu-
where the elementary magp, , transforms the unit circle to Igtion. The recursive dynamics can be represented as itera-
a circle with a “bump” of linear sizeyX around the point tions of the mapp, 4 (w),
w=e'?. Accordingly the mapP(™(w) adds on a new bump
to the image of the unit circle unddr"1(w). The bumps SO(W) =y, g,0Pn,.0,0°Br,,0,(@)- (7)
in the z plane simulate the accreted particles in the physical
space formulation of the growth process. The main idea imhe DLA cluster is fully determined by the stochastic itiner-
this construction is to choose the positions of the bups ary {#;}"_;. In Fig. 1 we present a typical DLA cluster
and their sizes/\, such as to achieve accretion fiked  grown by this method to size=10°. The main point of this
linear sizebumps on the boundary of the growing cluster paper is that the same method can be now used to grow a
according to the growth rules appropriate for the particulatarge variety of interesting fractal shapes, but without any
growth model that we discuss. randomness in the growth algorithm.
As an example consider DLA. Iz space we want to

accrete particles acco_r(_jing to the har_monic measure. This || pLA-LIKE CLUSTERS WITHOUT RANDOMNESS
means that the probability for theh particle to hit a bound-

ary elementds equalsP(s)ds, whereP(s) (the density of As a first example of a new model we will remove the
the harmonic measui®,10,19) andds are stochasticity of DLA, leaving the growth characteristics un-
changed. To this aim consider an itinerary
P(s)= [@C D (gh)’ (2) On+1=20, mod 2, ®)
ds=|®M-1"(el?)|dg. 3) together with Eq(4). Such an itinerary, although determin-

istic, is chaotic(in fact Bernoulli, Kolmogorov and ergodic
Heree'? is the preimage ai(s). Accordingly the probability covering the unit circle uniformly, withs-function correla-

to grow on an intervadd is uniform (independent ofg).  tion between consecutivé values. Accordingly, we expect
Thus to grow a DLA we have to choose random positionsthe growing cluster to be indistinguishable from a DLA, as is

8., and\, in Eq. (1) according to indeed the case, see Fig. 2. _ _
One advantage of the present formalism is that such a

No statement can be made quantitatively, not by eyeball. The
)\nzm. (4)  function®™(w) and ¢\ ¢(w) can be expanded in a Laurent
P (€' series in which the highest powenis[9,10]:
This way we accrete fixed size bumps in the physical plane (D(n)(w):F(ln)W+ an)+F(_r1)1W_1+F(_n%W_2+ e (9)

according to the harmonic measure. The elementary map

¢.0 IS chosen ag9)] The recursion equations for the Laurent coefficients of

1 ®M(w) can be obtained analytically, and in particular one

M 1+W+W(1+_ shows tha{9,10]

1+
d’)\,o(W):Wla[(W(l*'W) >

21—\ 1/2

: FO=T] [1+N02 (10)
w1+ _1] ' ®) K=t
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FIG. 2. A Bernoulli clustern=10°. n

. C . FIG. 4. The average ok\, over the lastM iterations of the
n) k
The importance of this lies in the fact thef" determines Bernoulli itinerary, with M=10° (continuous ling and M = 10*

that fractal dimension of the cluster. DefiniRg as the mini-  (yashed ling The horizontal line is the expected valueall The
mal radius of all circles irz that contain theth cluster, one  fyctuations are typical, reflecting the multiscaling distributions of
can prove thaf13] Ay in which large deviations are highly probable.
(n)
Ro<4F;". 11 ness and no probability measure, but we may still define a

. “running average” by, say, the ladil iterations
Accordingly one expects that g g v, &y

F{~nP x,, 12 1 <
= 42 =17 2 M (14

as J)TO is the only length scale in the problem. We can thus

present, as an example, plots Bf" for our deterministic In Fig. 4 we show a related quantitg}!,_kn)/M for
model (8) together withF{" in any stochastic DLA growth, 1 _ 17000 andM  10000. We see that IJHF; i trlie expected
see Fig. 3. ) . ) . fluctuations it settles down very quickly on the appropriate
Another comparison is furnlshed by the statistica\gf value of the DLA cluster, i.e., #D=0.877 - -. Any other
For the DLA case it was shown in Re{,10] that quantitative comparison that one can think of leads to the
same conclusion, i.e., the Bernoulli itinerary iana fide
(Np)= i (13 generic DLA. Of course, this is not surprising: the correla-
abn tion properties of successive values&fin Eg. (8) are in-
distinguishable from random numbers on the intef@a2].
where the average is taken over the harmonic measure. Thigevertheless, our point is that the present growth algorithm

is in agreement with the “electrostatic relation” derived by gives us freedom to choose deterministic itineraries resulting
Halsey[14]. In the Bernoulli itinerary there is no random-

10000

10 |

1 10 100 1000 10000 100000
n

FIG. 3. Comparison oF(ln) for a DLA (continuous ling and a FIG. 5. Cluster grown withW=233/144 ton=10". Note the
Bernoulli itinerary(dashed ling crossover from fractal to one-dimensional growth phases.
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FIG. 6. The cluster grown withW=p to n=10°. FIG. 8. The cluster grown withV=3Y?to n=10.
in DLA or other growth patterns, and we next exploit this ter that is associated with this rule is shown in Fig. 6. The
freedom to explore new geometries. cluster has a fractal dimensiob=1.86+0.02, as deter-
mined from the scaling oIF(ln). This is considerably higher
IV. FRACTAL GROWTH WITH QUASIPERIODIC than DLA (for which D~1.71).
ITINERARIES The golden mean is best approximated by the continued

. fraction representation
A. Winding numbers and geometry

A class of models is obtained by using a quasiperiodic _ 1
itinerary. Consider a simple map of the circle with a winding P=1F M1+ +--)] (16)
number W:

(15) Such a continued fraction is denoted below[8gl]. It is
known that the golden mean is special in presenting the
If we chooseW rational, W= P/Q, then after a crossover Slowest converging continued fraction. Other quadratic irra-
time the cluster grown is locked into a one-dimensional obJionals also have periodic continued fractions that converge
ject made of rays. In the next subsection we present an eXaster. In Figs. 7-11 we show the clusters grown with
tensive discussion of the crossover time and of the properties V2, V3, (1+110)/3, (13-1)/2, and\7, respec-
of the one-dimensional phase of growth. As an example CorﬂVEly. The continued fraction representations of these wind-
sider in Fig. 5 the cluster resulting from E@L5) with W ing numbers ar¢1,2],[1,1,2],[1,2,1],[1,3],[2,1,1,1,4 re-
=233/144. On the other hand, for an irrational windWg  spectively. In choosing these examples we picked quadratic
the itinerary is ergodic and the cluster grown is geometricallyirrationals whose representations converge relatively slowly.
nontrivial. As a first example we present the cade=p  This facilitates the exposition of scaling theory presented
wherep is the golden meap=(\/5+1)/2. The fractal clus- below.

0i+l:0i+27TW'

FIG. 7. The cluster grown withV=2'2?to n=10". FIG. 9. The cluster grown withW=[1+(10)*2]/3 to n=10".
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s
i‘
FIG. 10. The cluster grown withv=[ (13)*2—1]/2 to n=10". FIG. 12. The cluster grown with the period doubling itinerary to
n=10".
We note that the clusters shown have very complicated
geometry. Consider, for example, the ca¥és (13— 1)/2 bi=2mx,
and W= /7 shown in Figs. 10 and 11, respectively. They
exhibit thin spiral growth patterns at their root, and then e 1
become bushy and thin in an apparently oscillatory fashion. Xi+1=Xi ok +1

Accordingly, it becomes unclear whether the different qua-
dratic |rr_at|ona_l W|nd|r_lg numbers result in the same overall ki=—[log,(1—x)], (17)
fractal dimension. This question warrants some extra analy-
sis. We will argue be!ow_ that_ln spite of t_he difference ap-where[ - - -] stands for the integer value. We refer to this
pearance and the oscillations in the “bushiness,” the C|USterﬁinerary below as the “period doubling” algorithm. The
grown by quadratic irrational winding numbers have the,ster grown with this rule is shown in Fig. 12. The dimen-
same fractal dimensiob. sion of this cluster i$=1.77+0.02. In contrast to the qua-
dratic irrationals in this case a comparison F}f” of this
B. Different growth rules: Period doubling itinerary cluster toF{" of the golden mean itinerary shows a different

. . scaling dependence on(see Fig. 13
Clearly, one can come up with an arbitrary number of

different growth rules. In this paper we will consider only
one additional itinerary, to underline the fact that quadratic
irrational windings lead to a class of their own. This itinerary  In the previous section we noted that the geometry of
is constructed such that after everyiferations the point#, some of the clusters with quadratic irrational winding exhibit
chosen on the circle are equidistributed without repetitions.
The order of visitation is determined by the following rule:

C. Universality classes?

0.8 |

2 10°

10

0

10
n

FIG. 13. The ratioR of F{" of the golden mean t&{" of the
FIG. 11. The cluster grown withvV=7%2to n=10". period doubling clusters.
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FIG. 14. (a) The ratioR of F{" of the cluster grown withw n n

=2 and F{" of the cluster grown with/=32 (b) The same

ratio for the clusters grown withiv=22 and a typical DLA. FIG. 15. The ratiR of F{"” of the golden mean cluster afd"

of other quadratic irrationalga)—(d) show, respectivelyW[ (13%2
—1)/2], W=22 W=7Y2 andW=[1+ (10)*?]/3.
oscillations. It is thus not clear whether they have the same
fractal dimensiorD. In this subsection we provide numerical mean itinerary, a natural question is what happens to the
test of the claim that the quadratic irrationals belong to thQ‘Jrowth pattern Wherp is rep|aced by ratios of successive
same universality class. In the following sections we addresgibonacci numbers which are defined by the recursion rela-
this question using additional tools. tion F1=Fn+Fm_y, Fo=0, F;=1. Using rational
To study quantitatively the oscillatory fractal geometry approximantsp,=F,_1/Fn,, the itinerary becomes peri-
we consider the dependenceRf’ onn. In Fig. 14 panel a  odic on the unit circle with perio,,, and it is observed in
we present compensated plotsFif’(v2) vs F{"(/3) as a  simulations (see Fig. 5 that while for small clustersh
function of n. It appears that although this ratio exhibits os- <n(F,,) the cluster appears fractal, foen.(F,) the clus-
cillations, these are bounded and decreasing in amplitude, &r consists of a set oF,, rays, sometimes fused into a
least up ton=10°. For comparison we show in panel b of smaller set of one-dimensional rays whose number is ex-
Fig. 14 a plot oﬂ:(ln)(\/i)/F(ln)(DLA). Here we see the clear tremely sensitive to the initial conditiorieere controlled by
difference in dimension as seen in the ratio approaching zerthe value ofAg).
as a power law im. In Fig. 15 we show compensated plots
of F{" of the clusters in Figs. 7—-11 versB§" of the golden
mean growth. We see oscillations on the logarithmic scale, The properties of the one-dimensional phase are impor-
but again these are bounded, and we propose that this poin[ts

towards the possibility that all quadratic irrationals Winding.ant for developing a scaling theory. As an example of the

numbers lead to the same overall dimension of the cluster. th(\?\:ﬁi?:trgngll?setg?r\?vri t‘cﬁf ‘1512 4%;”;:5“;?)53?]”;2?*? :‘()F[Ij? 'vg?-
the next section we address the issue of universality classé i which 0 11_0 22 0.44 9 d0.88. Evidently th
using additional tools. We end this section with the remar €S Ofho Which areé ©.14, ©.22, v.24, and 4.cc. tvidently the

that the present analysis of the oscillatory behavior would p&OSSOVer from fractal to one-dimensional behavior depends

very difficult to perform using traditional empirical methods. on Ao- We also note that the number.of rays in the one-
dimensional phase has a nonmonotonic dependence,on

) This indicates high sensitivity of the number of rays to
WIND\I/N1C—50\>\//\/|$E?Ri?lgﬁﬁtlngL%Eg;ZNTs change_s in the initia_l cond_itions. Obv_ioqsly, the radius of_ the
cluster in the one-dimensional case is inversely proportional
To gain understanding of the geometry of the clusterd0 the number of rays. On the other hand, we have found a
grown with quadratic irrational winding numbers we will surprising invariant:F(ln) is asymptotically invariant to the
make use now of the well known fact that these irrationalshumber of raysi.e., to initial condition$ being always equal
can be systematically approximated by rational approxito ny\o/Q, up to a constant of proportionality depending on
mants. Thus, having a cluster constructed with a golderthe microscopic parametaronly. The numerical evidence is

A. The one-dimensional phase
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FIG. 16. Clusters grown wittW=144/89 with four different
values of\, from 0.11 to 0.88.

3

0 1 s
0.0 0.5 1.0 1.5

u

FIG. 18. Scaling behavior for six separate data setsf{an
with u=n%49Q. Shown are \;=0.88 with W=89/55, W
=144/89, W=233/144, W=377/233, Ay=0.44 with W
=144/89, \y=0.22 withW=144/89.

bound stems from the inequalifg,<4F{", meaning that

the number of rays must be larger th@m. This invariance
also indicates that the geometry of the rays is not arbitrary,
and that the angles between them are arranged to agree with
an invariantF{" .

shown in Fig. 17. Note the convergence to the golden mean

in panel(a), and to/2 in panel(b) (which is the value of the
ratios of\\). This finding puts strict bounds on the number

of possible rays. The upper bound is obviouSlyThe lower

1.6
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R 1.2

1.0

0.8

1.6

1.4

1.2

1.0

5000 10000
n

FIG. 17. () The ratioR of F{" for clusters grown with\,
=0.88, and winding numberg/=_89/55 andW=144/89 (upper
curve and W=144/89 andwW=233/144(lower curve. Both con-
verge to the golden mearb) Similar plots withW=144/89. )\,
=0.22 is compensated by,=0.11, A ;=0.44 by A(y=0.22 and
No=0.88 by\,=0.44. All these plots converge t0'2

B. Scaling function

The crossover in fractal shape is a general result for any
periodic itinerary withWW=P/Q, and suggests the existence
of a scaling forF{" of the form

F{M=n'P\of(n¥/Q), (18)

where we have assumed that the crossover cluster size scales
as

n.(Q)~Q (19

The asymptotic forms oF{" obey F{V~nP/\, for n
<n¢(Q), while F{”~(n/Q) J\, for n>n(Q). In the first
asymptote we expedD to be the same for all values of
rational approximants tg, including the limiting fractal
cluster. The growing cluster cannot distinguish between the
rational approximant and the limiting irrational as long as the
fractal phase is observed. The second asymptote is demon-
strated in the previous subsection. Thus we require that the
asymptotic forms of the scaling function obey

f(u)—const asu—0, (20)
f(u)~u asu—co, (21

The second asymptot@1) determines the scaling relation
a=D/(D-1). (22

For the golden mean fract®d~1.86 and consequently in
this casex~2.16.

In Fig. 18 F{M/(n*®\/\,) is plotted against the scaling
variableu=n¢/Q for six different clusters with different



PRE 62 CONFORMAL DYNAMICS OF FRACTAL GROWTH . .. 1713

values of W and \y. The best data collapse was obtained 6.0 ' '
using the valuea=2.15. The data collapse achieved is
readily apparent with the scaling functidgu) predicted by
the theory.

5.0
VI. THE CROSSOVER AND THE ESTIMATE
OF THE DIMENSION Io n
g(n)

In this section we discuss the properties of the conformal
map ¢, o which determine the crossover from fractal to one- 40
dimensional growth. In other words, we will attempt to pro-
vide an independent estimaterqf as a function of the wind-
ing numbeW. If we succeeded to estimate the exponeiir
Eqg. (19 independently from Eq(22), we would have an
equation for the dimension. 30

To understand the crossover, we note that the reason for
the fractal growth phase with rational winding is that after
every event of growth the interfacg(e'?) is nonlocally

reparametrized in addition to the local growth event. Accord- 20 . .
ingly, a periodic orbit on the unit circle is not necessarily 15 20 25 3.0
mapped to a periodic orbit in The region in the unit circle
which is significantly affected by growing theh bump has Iog (Q)
a scaley\,, centered around, [15]. Accordingly we can 10
estimate when reparametrization will cause a “miss” in the g, 19. The measured crossover valogas a function of in
mapped orbit: as long as log-log plots. In dots are the values offor which the condition
AT*=472/Q? was met for the first time, in squares for the last
o 2m (23 time.
n Q ’

ThusD/(D—1)=2 or D=2. Even though we get an over-
the growth will remain fractal. We can therefore expect aestimate, this is a good indication that we are on the right
crossover to one-dimensional growth when this condition igrack. The reason for the overestimate is that we neglected
violated, something that is bound to happen singede- the fluctuations that sometimes lead\p much larger than
creases witm on the average, see E(L3) and the discus- the mean. We expect a crossover to occur wherlatgest

sion below. VA are smaller than 2/Q, since it is enough to have a few
What remains is to estimate, as a function oh in the  large\y to cause a reparametrization that will ruin a poten-
crossover region that is defined by tial periodic orbit. We thus seek a condition
VA ~27Q. (24) 47
e A= ma Nk n_ o~ ra (28)

In the fractal region\,, is a highly erratic function of. Even
though we do not have here randomness in the sense ®¥fe note that, is an erratic function ok, and therefore the
DLA, it is natural to consider, in a fashion similar to Eq. condition (28) can be met more than once in a given series
(14), the distribution of A\, over Q successive steps of \,. In Fig. 19 we show two log-log plots af, computed
growth. ForQ large enough such distributions have well de-from the value ofn for which ‘/)\nmaxzzw/Q, plotted as a
fined moments. In particular consider the first moment function of Q=F,,.
| The crossover valua, was computed in two different
1 D ways. In circles we exhibit the values obtained from measur-
{(An)o= Q%o M- (25 ing wheny\"™=27/Q for the first time, and in squares we
exhibit the values obtained fronix "= 27/Q for the last

The power law dependence Eﬁ“) and Eq.(10) imply that  time. Computing the slopes by linear regression and averag-
this moment has to be ing between them we find the scaling law

1 nC~Q2.17iO.03. (29)
<)\n>Q:an_D- (26)
Comparing with Egs(19), (22) we get an estimate fob
=1.86+=0.03, in excellent agreement with the determination
of the dimension byr{" .

We note in passing that]'® can be assigned a general-

_ A2 ized dimensiorD ., in the language of Hentschel and Procac-
Ap,~1Nc—nc~Q*% (27) cia[16]. Define

If we estimateknc in Eq. (24) by its mean(26), we would
write
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FIG. 20. Scaling behavior for nine separate data sets for clusters
grown with truncated period doubling itineraries, in addition to one

1.0 L L

data set of the quasiperiodic class. See text for details. 1.5 20 25 3.0
l n
A o= = N 30 log (Q)
(Nho=gq, 2 M (30) 3

FIG. 21. The measured crossover valmgsas a function ofQ
=2"in a log-log plot. Shown are the values pffor which the
A= lim <)\ﬂ>(1?/q~n*2Dx/D_ (31)  condition\ ™= (2m/2") was met for the first time.

q*)OO

From Ref.[10] the precise scaling law is

The conclusion from this data collapse is that the mecha-
Comparing with Eq(22) we conclude that in this case there nism governing the crossover from fractal to one-
exists a scaling relation dimensional growth phases here is the same as the one dis-
cussed above for the quasiperiodic itineraries. The difference
D.=D-1. (32 between the dimensions of the period doubling cluster and

Such a scaling relation was conjectured by Turkevich ancﬁhe quasiperiodic cluster must Iie_ in ;De different_ numerical
Scher for DLA[17] (of course with a differend andD..). value_ of the exponent characten_zm@ as a function oh.
While there are severe doubts about the correctness of thi8 trf"s case the natural averaging cycles are of lergth
conjecture for DLA[14], we point out that in our case it —2 - Figure 21 is the analog of Fig. 19 for the period dou-
follows directly from elementary considerations. bling itinerary, where the critical value, was estimated
The period doubling itineraryEven though the period from the first time that/\ 7 became smaller thanz22".
doubling itinerary leads to a cluster whose fractal dimension The linear regression provides us with the scaling law
differs from the quadratic irrational windings, we show here 233001
that the ideas presented above pertain equally to this growth Ne~Q ' (33
pattern. Instead of rational approximants we use here, nat
rally, 2"-periodic orbits which are obtained by cutting the
itinerary (17) after 2" iterations and repeating it periodically.
The crossover from fractal to one-dimensional growth is
seen also in this case, and we can use it in a very similar way

to |dent|fy the crucial eXponent that determines the dimen- The main points of this paper are as follows. The iterated
sion of the asymptotic cluster. Indeed, the whole set of ideagonformal maps algorithm for fractal growth patterns offers a
developed above repeats verbatim by changiwith 2".  convenient way to introduce a large number of deterministic
What remains is to find ' as a function of. growth models with highly nontrivial fractal geometry. Itin-
In Fig. 20 we show the data collapse obtained as in Figeraries with irrational winding numbers generate fractal
18 for the quasiperiodic analog. We show nine different datayrowth patterns. We proposed that all the quadratic irratio-
sets with periodic itineraries of periods 32, 64, and 128 andhals produce clusters of the same fractal dimension, in spite
VAo values of 0.22, 0.44, and 0.88. The scaling function forof different appearance. By considering a series of rational
these data sets is plotted as a functioruefn®44Q, where  approximants we could produce a scaling theory of the grow-
the exponent is computed fro=1.78. It is noteworthy ing clusters, achieving data collapse for all valuesph j,
that the scaling function obtained appears identical to thandP/Q. Identifying the mechanism for the crossover from
scaling functionf (u) for the quasiperiodic family. For com- fractal to one-dimensional growth phases we could pinpoint
parison we added in Fig. 20 also one curve from the quasithe exponent that determines the fractal dimen&onThis
periodic class, and it appears indistinguishable from the resexponent characterizes thelependence of the extremal val-

¥omputingD we find D=1.75x0.05 in good agreement
with the numerical estimate frof{" .

VIl. SUMMARY AND THE ROAD AHEAD
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ues ofA,,. The mechanism appears general; itineraries leadwas achieved numerically. The scaling theory presented
ing to different cluster dimensions, such as the period douabove has a strong flavor of a renormalization group ap-
bling itinerary (17) and its truncated versions, can be proach. It appears that such an underlying theory may have a
understood in the same way. The scaling funcii®8 and low codimension, maybe with one important exponent, the
the scaling relation(22) are general, but the exponeat one characterizing the rate of crossover of the rational ap-
changes. Its determination by the scaling\§f*Eq. (28) is, ~ proximants to the irrational limit. The search of such a theory
however, general. We note that all the numerical tests poinkppears to be an important task for the near future.
in favor of this scenario, and in our opinion rule out a value
D=2 for the clusters discussed above. The only way to get
two-dimensional growth, as shown above, is if the distribu-
tion of A, does not multiscale, i.e., dl), are the same, and We benefited from discussions with T.C. Halsey, C.
the scaling of\[® identifies with the scaling of the average Tresser, and L. Peliti. This work has been supported in part
of \,. by the European Commission under the TMR program, the
Nevertheless, we point out that the crucial step in ouNaftali and Anna Backenroth-Bronicki Fund for Research in
scenario, the determination of the exponentn Eq. (19,  Chaos and Complexity, and the Petroleum Research Fund.
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