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Conformal dynamics of fractal growth patterns without randomness
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Many models of fractal growth patterns~such as diffusion limited aggregation and dielectric breakdown
models! combine complex geometry with randomness; this double difficulty is a stumbling block to their
elucidation. In this paper we introduce a wide class of fractal growth models with highly complex geometry but
without any randomness in their growth rules. The models are defined in terms of deterministic itineraries of
iterated conformal maps, generating the functionF (n)(v) which maps the exterior of the unit circle to the
exterior of ann-particle growing aggregate. The complexity of the evolving interfaces is fully contained in the
deterministic dynamics of the conformal mapF (n)(v). We focus attention on a class of growth models in
which the itinerary is quasiperiodic. Such itineraries can be approached via a series of rational approximants.
The analytic power gained is used to introduce a scaling theory of the fractal growth patterns and to identify
the exponent that determines the fractal dimension.

PACS number~s!: 64.60.Ak
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I. INTRODUCTION

In this paper we introduce a class of fractal growth p
terns in two dimensions, constructed in terms of the con
mal maps from the exterior of the unit circle to the exter
of the growing cluster. Until now most of the interestin
fractal growth models included randomness as an esse
aspect of the growth algorithms. Foremost in such mod
has been the diffusion limited aggregation~DLA ! model that
was introduced in 1981 by Witten and Sander@1#. This
model has been shown to underlie many pattern form
processes including dielectric breakdown@2#, two-fluid flow
@3#, and electrochemical deposition@4#. The algorithm begins
with fixing one particle at the center of coordinates ind
dimensions, and follows the creation of a cluster by releas
random walkers from infinity, allowing them to walk aroun
until they hit any particle belonging to the cluster. Upo
hitting they are attached to the growing cluster. The grow
probability for a random walker to hit the interface is know
as the ‘‘harmonic measure,’’ being the solution of the h
monic ~Laplace! equation with the appropriate bounda
conditions. The DLA model was generalized to a family
models known collectively as dielectric breakdown mode
in which the density of growth probability is the density
the harmonic measure raised to a powerh @5#. Forh51 one
regains the DLA model; the intervalhP(0,̀ ) generates a
family of growth patterns from compact to a single need
For h50 one obtains a growth probability that is unifor
for all boundary points. This is known as the Eden mo
that was introduced originally to describe the growth of ca
cer cells@6#.

The fundamental difficulty of all these models is that th
mathematical description calls for solving equations w
boundary conditions on a complex, evolving interface. It
therefore advantageous to swap for a simple boundary,
the unit circle, and to delegate the complexity to the dyna
ics of the conformal map from the exterior of the unit circ
to the exterior of the growing cluster. For continuous tim
PRE 621063-651X/2000/62~2!/1706~10!/$15.00
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processes this method had been around for decades@7,8#, and
had been used extensively. For discrete particle growth s
a language was developed recently@9–11#, showing that
DLA in two dimensions can be grown by iterating stochas
conformal maps. In this paper we employ this language
define models in which the stochasticity is eliminated al
gether, to create deterministic iterations of conformal ma
with very interesting fractal growth properties. It is stress
below that these models and their interesting properties
natural extensions of the discrete conformal dynamics
may be very difficult to study such models with the trad
tional techniques in physical space.

A central thesis of this paper is that the growth mod
introduced below are simpler to understand than DLA, ev
though the fractal geometry exhibited does not seem simp
Indeed, we present below some tools and concepts that a
us to explain why the growing cluster is fractal. We prese
a scaling theory of the growing clusters, and identify t
exponent that determines the fractal dimension. In Sec. II
review the basic ideas of conformal dynamics as a metho
grow DLA and related growth patterns. In Sec. III we ma
the point that within this framework randomness can
eliminated from the discussion without changing the prop
ties of the fractal growth: one can have deterministic grow
rules with clusters that are indistinguishable from DLA.
Sec. IV we introduce fractal growth patterns that are o
tained from quasiperiodic itineraries of iterated conform
maps. These itineraries are characterized by a winding n
berW. The growing clusters have complex geometries an
different appearance for everyW. We propose nevertheles
that all the quadratic irrationals belong to the same univ
sality class, and that the dimensions of their clusters are
same. In Sec. V we consider rational approximantsP/Q to
the quadratic irrational winding numbersW. With rational
approximants the growth patterns cross over from a fra
phase of growth to a one-dimensional starlike growth p
tern. We argue that the analysis of the crossover as a func
of Q provides us with a scaling theory, allowing the intr
1706 ©2000 The American Physical Society
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PRE 62 1707CONFORMAL DYNAMICS OF FRACTAL GROWTH . . .
duction of universality classes and the achievement of d
collapse. In Sec. VI we elucidate the mechanism for cro
over from fractal to one-dimensional growth, and identify t
exponent that determines the fractal dimension. In Sec.
we summarize and offer final remarks regarding the av
ability of a renormalization group treatment and of the ro
ahead.

II. DISCRETE CONFORMAL DYNAMICS
FOR FRACTAL GROWTH PATTERNS

The basic idea is to follow the evolution of the conform
mappingF (n)(w) which maps the exterior of the unit circl
eiu in the mathematicalw plane onto the complement of th
~simply connected! cluster of n particles in the physicalz
plane@9–11#. The unit circle is mapped to the boundary
the cluster which is parametrized by the arc lengths, z(s)
5F (n)(eiu). This mapF (n)(w) is made from compositions
of elementary mapsfl,u ,

F (n)~w!5F (n21)
„fln ,un

~w!…, ~1!

where the elementary mapfl,u transforms the unit circle to
a circle with a ‘‘bump’’ of linear sizeAl around the point
w5eiu. Accordingly the mapF (n)(w) adds on a new bump
to the image of the unit circle underF (n21)(w). The bumps
in the z plane simulate the accreted particles in the phys
space formulation of the growth process. The main idea
this construction is to choose the positions of the bumpsun

and their sizesAln such as to achieve accretion offixed
linear sizebumps on the boundary of the growing clust
according to the growth rules appropriate for the particu
growth model that we discuss.

As an example consider DLA. Inz space we want to
accrete particles according to the harmonic measure.
means that the probability for thenth particle to hit a bound-
ary elementds equalsP(s)ds, whereP(s) ~the density of
the harmonic measure@9,10,12#! andds are

P~s!5
1

uF (n21)8~eiu!u
, ~2!

ds5uF (n21)8~eiu!udu. ~3!

Hereeiu is the preimage ofz(s). Accordingly the probability
to grow on an intervaldu is uniform ~independent ofu).
Thus to grow a DLA we have to choose random positio
un , andln in Eq. ~1! according to

ln5
l0

uF (n21)8~eiun!u2
. ~4!

This way we accrete fixed size bumps in the physical pl
according to the harmonic measure. The elementary m
fl,u is chosen as@9#

fl,0~w!5w12aH ~11l!

2w
~11w!F11w1wS 11

1

w2

2
2

w

12l

11l D 1/2G21J a

, ~5!
ta
s-

II
l-
d

l

l
in

r

is

s

e
ap

fl,u~w!5eiufl,0~e2 iuw!. ~6!

The parametera is confined in the range 0,a,1, determin-
ing the shape of the bump. We employa52/3 in this simu-
lation. The recursive dynamics can be represented as it
tions of the mapfln ,un

(w),

F (n)~w!5fl1 ,u1
+fl2 ,u2

+•••+fln ,un
~v!. ~7!

The DLA cluster is fully determined by the stochastic itine
ary $u i% i 51

n . In Fig. 1 we present a typical DLA cluste
grown by this method to sizen5105. The main point of this
paper is that the same method can be now used to gro
large variety of interesting fractal shapes, but without a
randomness in the growth algorithm.

III. DLA-LIKE CLUSTERS WITHOUT RANDOMNESS

As a first example of a new model we will remove th
stochasticity of DLA, leaving the growth characteristics u
changed. To this aim consider an itinerary

un1152un mod 2p, ~8!

together with Eq.~4!. Such an itinerary, although determin
istic, is chaotic~in fact Bernoulli, Kolmogorov and ergodic!,
covering the unit circle uniformly, withd-function correla-
tion between consecutiveu values. Accordingly, we expec
the growing cluster to be indistinguishable from a DLA, as
indeed the case, see Fig. 2.

One advantage of the present formalism is that suc
statement can be made quantitatively, not by eyeball.
functionF (n)(w) andfl,u(w) can be expanded in a Lauren
series in which the highest power isw @9,10#:

F (n)~w!5F1
(n)w1F0

(n)1F21
(n)w211F22

(n)w221•••. ~9!

The recursion equations for the Laurent coefficients
F (n)(w) can be obtained analytically, and in particular o
shows that@9,10#

F1
(n)5)

k51

n

@11lk#
a. ~10!

FIG. 1. A DLA cluster,n5105.
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1708 PRE 62BENNY DAVIDOVITCH et al.
The importance of this lies in the fact thatF1
(n) determines

that fractal dimension of the cluster. DefiningRn as the mini-
mal radius of all circles inz that contain thenth cluster, one
can prove that@13#

Rn<4F1
(n) . ~11!

Accordingly one expects that

F1
(n);n1/DAl0, ~12!

asAl0 is the only length scale in the problem. We can th
present, as an example, plots ofF1

(n) for our deterministic
model~8! together withF1

(n) in any stochastic DLA growth,
see Fig. 3.

Another comparison is furnished by the statistics ofln .
For the DLA case it was shown in Refs.@9,10# that

^ln&5
1

aDn
, ~13!

where the average is taken over the harmonic measure.
is in agreement with the ‘‘electrostatic relation’’ derived b
Halsey @14#. In the Bernoulli itinerary there is no random

FIG. 2. A Bernoulli cluster,n5105.

FIG. 3. Comparison ofF1
(n) for a DLA ~continuous line! and a

Bernoulli itinerary~dashed line!.
s

his

ness and no probability measure, but we may still defin
‘‘running average’’ by, say, the lastM iterations

^ln&M[
1

M (
k5n2M

n

lk . ~14!

In Fig. 4 we show a related quantity ((k5n2M
M klk)/M for

M51000 andM510000. We see that up to the expect
fluctuations it settles down very quickly on the appropria
value of the DLA cluster, i.e., 1/aD50.877•••. Any other
quantitative comparison that one can think of leads to
same conclusion, i.e., the Bernoulli itinerary is abona fide
generic DLA. Of course, this is not surprising: the corre
tion properties of successive values ofun in Eq. ~8! are in-
distinguishable from random numbers on the interval@0,2p#.
Nevertheless, our point is that the present growth algorit
gives us freedom to choose deterministic itineraries resul

FIG. 4. The average ofklk over the lastM iterations of the
Bernoulli itinerary, with M5103 ~continuous line! and M5104

~dashed line!. The horizontal line is the expected value, 1/aD. The
fluctuations are typical, reflecting the multiscaling distributions
lk in which large deviations are highly probable.

FIG. 5. Cluster grown withW5233/144 ton5104. Note the
crossover from fractal to one-dimensional growth phases.
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PRE 62 1709CONFORMAL DYNAMICS OF FRACTAL GROWTH . . .
in DLA or other growth patterns, and we next exploit th
freedom to explore new geometries.

IV. FRACTAL GROWTH WITH QUASIPERIODIC
ITINERARIES

A. Winding numbers and geometry

A class of models is obtained by using a quasiperio
itinerary. Consider a simple map of the circle with a windi
number W:

u i 115u i12pW. ~15!

If we chooseW rational, W5P/Q, then after a crossove
time the cluster grown is locked into a one-dimensional
ject made of rays. In the next subsection we present an
tensive discussion of the crossover time and of the prope
of the one-dimensional phase of growth. As an example c
sider in Fig. 5 the cluster resulting from Eq.~15! with W
5233/144. On the other hand, for an irrational windingW
the itinerary is ergodic and the cluster grown is geometrica
nontrivial. As a first example we present the caseW5r
wherer is the golden meanr5(A511)/2. The fractal clus-

FIG. 6. The cluster grown withW5r to n5105.

FIG. 7. The cluster grown withW521/2 to n5105.
c

-
x-
es
n-

y

ter that is associated with this rule is shown in Fig. 6. T
cluster has a fractal dimensionD51.8660.02, as deter-
mined from the scaling ofF1

(n) . This is considerably highe
than DLA ~for which D'1.71).

The golden mean is best approximated by the contin
fraction representation

r5
1

111/@111/~11••• !#
. ~16!

Such a continued fraction is denoted below as@0,1̄#. It is
known that the golden mean is special in presenting
slowest converging continued fraction. Other quadratic ir
tionals also have periodic continued fractions that conve
faster. In Figs. 7–11 we show the clusters grown withW
5A2, A3, (11A10)/3, (A1321)/2, andA7, respec-
tively. The continued fraction representations of these wi
ing numbers are@1,2̄#,@1,1,2#,@1,2,1#,@1,3̄#,@2,1,1,1,4# re-
spectively. In choosing these examples we picked quadr
irrationals whose representations converge relatively slow
This facilitates the exposition of scaling theory presen
below.

FIG. 8. The cluster grown withW531/2 to n5105.

FIG. 9. The cluster grown withW5@11(10)1/2#/3 to n5105.
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1710 PRE 62BENNY DAVIDOVITCH et al.
We note that the clusters shown have very complica
geometry. Consider, for example, the casesW5(A1321)/2
and W5A7 shown in Figs. 10 and 11, respectively. Th
exhibit thin spiral growth patterns at their root, and th
become bushy and thin in an apparently oscillatory fash
Accordingly, it becomes unclear whether the different qu
dratic irrational winding numbers result in the same ove
fractal dimension. This question warrants some extra an
sis. We will argue below that in spite of the difference a
pearance and the oscillations in the ‘‘bushiness,’’ the clus
grown by quadratic irrational winding numbers have t
same fractal dimensionD.

B. Different growth rules: Period doubling itinerary

Clearly, one can come up with an arbitrary number
different growth rules. In this paper we will consider on
one additional itinerary, to underline the fact that quadra
irrational windings lead to a class of their own. This itinera
is constructed such that after every 2n iterations the pointsuk
chosen on the circle are equidistributed without repetitio
The order of visitation is determined by the following rule

FIG. 10. The cluster grown withW5@(13)1/221#/2 to n5105.

FIG. 11. The cluster grown withW571/2 to n5105.
d

n.
-
ll
y-
-
rs

f

c

s.

u i52pxi ,

xi 115xi1
3

2ki11
21

ki52@ log2~12xi !#, ~17!

where @•••# stands for the integer value. We refer to th
itinerary below as the ‘‘period doubling’’ algorithm. Th
cluster grown with this rule is shown in Fig. 12. The dime
sion of this cluster isD51.7760.02. In contrast to the qua
dratic irrationals in this case a comparison ofF1

(n) of this
cluster toF1

(n) of the golden mean itinerary shows a differe
scaling dependence onn ~see Fig. 13!.

C. Universality classes?

In the previous section we noted that the geometry
some of the clusters with quadratic irrational winding exhi

FIG. 12. The cluster grown with the period doubling itinerary
n5105.

FIG. 13. The ratioR of F1
(n) of the golden mean toF1

(n) of the
period doubling clusters.
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PRE 62 1711CONFORMAL DYNAMICS OF FRACTAL GROWTH . . .
oscillations. It is thus not clear whether they have the sa
fractal dimensionD. In this subsection we provide numeric
test of the claim that the quadratic irrationals belong to
same universality class. In the following sections we addr
this question using additional tools.

To study quantitatively the oscillatory fractal geomet
we consider the dependence ofF1

(n) on n. In Fig. 14 panel a
we present compensated plots ofF1

(n)(A2) vs F1
(n)(A3) as a

function of n. It appears that although this ratio exhibits o
cillations, these are bounded and decreasing in amplitud
least up ton5105. For comparison we show in panel b o
Fig. 14 a plot ofF1

(n)(A2)/F1
(n)(DLA). Here we see the clea

difference in dimension as seen in the ratio approaching z
as a power law inn. In Fig. 15 we show compensated plo
of F1

(n) of the clusters in Figs. 7–11 versusF1
(n) of the golden

mean growth. We see oscillations on the logarithmic sc
but again these are bounded, and we propose that this p
towards the possibility that all quadratic irrationals windi
numbers lead to the same overall dimension of the cluste
the next section we address the issue of universality cla
using additional tools. We end this section with the rem
that the present analysis of the oscillatory behavior would
very difficult to perform using traditional empirical method

V. TOWARDS A SCALING THEORY:
WINDING WITH RATIONAL APPROXIMANTS

To gain understanding of the geometry of the clust
grown with quadratic irrational winding numbers we w
make use now of the well known fact that these irration
can be systematically approximated by rational appro
mants. Thus, having a cluster constructed with a gol

FIG. 14. ~a! The ratioR of F1
(n) of the cluster grown withW

521/2 and F1
(n) of the cluster grown withW531/2. ~b! The same

ratio for the clusters grown withW521/2 and a typical DLA.
e

e
ss

-
at
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e,
nts
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es
k
e
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s
i-
n

mean itinerary, a natural question is what happens to
growth pattern whenr is replaced by ratios of successiv
Fibonacci numbers which are defined by the recursion r
tion Fm115Fm1Fm21 , F050, F151. Using rational
approximantsrm5Fm21 /Fm , the itinerary becomes peri
odic on the unit circle with periodFm , and it is observed in
simulations ~see Fig. 5! that while for small clustersn
!nc(Fm) the cluster appears fractal, forn@nc(Fm) the clus-
ter consists of a set ofFm rays, sometimes fused into
smaller set of one-dimensional rays whose number is
tremely sensitive to the initial conditions~here controlled by
the value ofl0).

A. The one-dimensional phase

The properties of the one-dimensional phase are imp
tant for developing a scaling theory. As an example of
interesting behavior seen as a function ofl0 consider Fig. 16
in which clusters withW5144/89 are grown with four val-
ues ofl0 which are 0.11, 0.22, 0.44, and 0.88. Evidently t
crossover from fractal to one-dimensional behavior depe
on l0. We also note that the number of rays in the on
dimensional phase has a nonmonotonic dependence onl0.
This indicates high sensitivity of the number of rays
changes in the initial conditions. Obviously, the radius of t
cluster in the one-dimensional case is inversely proportio
to the number of rays. On the other hand, we have foun
surprising invariant:F1

(n) is asymptotically invariant to the
number of rays~i.e., to initial conditions! being always equa
to nAl0/Q, up to a constant of proportionality depending o
the microscopic parametera only. The numerical evidence i

FIG. 15. The ratioR of F1
(n) of the golden mean cluster andF1

(n)

of other quadratic irrationals.~a!–~d! show, respectively,W@(131/2

21)/2#, W521/2, W571/2, andW5@11(10)1/2#/3.
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1712 PRE 62BENNY DAVIDOVITCH et al.
shown in Fig. 17. Note the convergence to the golden m
in panel~a!, and toA2 in panel~b! ~which is the value of the
ratios ofAl0). This finding puts strict bounds on the numb
of possible rays. The upper bound is obviouslyQ. The lower

FIG. 16. Clusters grown withW5144/89 with four different
values ofl0, from 0.11 to 0.88.

FIG. 17. ~a! The ratio R of F1
(n) for clusters grown withl0

50.88, and winding numbersW589/55 andW5144/89 ~upper
curve! and W5144/89 andW5233/144~lower curve!. Both con-
verge to the golden mean.~b! Similar plots withW5144/89. l0

50.22 is compensated byl050.11, l050.44 by l050.22 and
l050.88 byl050.44. All these plots converge to 21/2.
n

bound stems from the inequalityRn<4F1
(n) , meaning that

the number of rays must be larger thanQ/4. This invariance
also indicates that the geometry of the rays is not arbitra
and that the angles between them are arranged to agree
an invariantF1

(n) .

B. Scaling function

The crossover in fractal shape is a general result for
periodic itinerary withW5P/Q, and suggests the existenc
of a scaling forF1

(n) of the form

F1
(n)5n1/DAl0f ~n1/a/Q!, ~18!

where we have assumed that the crossover cluster size s
as

nc~Q!;Qa. ~19!

The asymptotic forms ofF1
(n) obey F1

(n);n1/DAl0 for n
!nc(Q), while F1

(n);(n/Q)Al0 for n@nc(Q). In the first
asymptote we expectD to be the same for all values o
rational approximants tor, including the limiting fractal
cluster. The growing cluster cannot distinguish between
rational approximant and the limiting irrational as long as t
fractal phase is observed. The second asymptote is dem
strated in the previous subsection. Thus we require that
asymptotic forms of the scaling function obey

f ~u!→const asu→0, ~20!

f ~u!;u asu→`. ~21!

The second asymptote~21! determines the scaling relation

a5D/~D21!. ~22!

For the golden mean fractalD'1.86 and consequently in
this casea'2.16.

In Fig. 18 F1
(n)/(n1/DAl0) is plotted against the scalin

variable u5n1/a/Q for six different clusters with different

FIG. 18. Scaling behavior for six separate data sets forf (u)
with u5n0.46/Q. Shown are l050.88 with W589/55, W
5144/89, W5233/144, W5377/233, l050.44 with W
5144/89, l050.22 withW5144/89.
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PRE 62 1713CONFORMAL DYNAMICS OF FRACTAL GROWTH . . .
values ofW and l0. The best data collapse was obtain
using the valuea52.15. The data collapse achieved
readily apparent with the scaling functionf (u) predicted by
the theory.

VI. THE CROSSOVER AND THE ESTIMATE
OF THE DIMENSION

In this section we discuss the properties of the conform
mapfl,u which determine the crossover from fractal to on
dimensional growth. In other words, we will attempt to pr
vide an independent estimate ofnc as a function of the wind-
ing numberW. If we succeeded to estimate the exponenta in
Eq. ~19! independently from Eq.~22!, we would have an
equation for the dimension.

To understand the crossover, we note that the reason
the fractal growth phase with rational winding is that af
every event of growth the interfacez(eiu) is nonlocally
reparametrized in addition to the local growth event. Acco
ingly, a periodic orbit on the unit circle is not necessar
mapped to a periodic orbit inz. The region in the unit circle
which is significantly affected by growing thenth bump has
a scaleAln centered aroundun @15#. Accordingly we can
estimate when reparametrization will cause a ‘‘miss’’ in t
mapped orbit: as long as

Aln>
2p

Q
, ~23!

the growth will remain fractal. We can therefore expec
crossover to one-dimensional growth when this condition
violated, something that is bound to happen sinceln de-
creases withn on the average, see Eq.~13! and the discus-
sion below.

What remains is to estimateln as a function ofn in the
crossover region that is defined by

Alnc
'2p/Q. ~24!

In the fractal regionln is a highly erratic function ofn. Even
though we do not have here randomness in the sens
DLA, it is natural to consider, in a fashion similar to E
~14!, the distribution of lk over Q successive steps o
growth. ForQ large enough such distributions have well d
fined moments. In particular consider the first moment

^ln&Q[
1

Q (
k5n2Q

n

lk . ~25!

The power law dependence ofF1
(n) and Eq.~10! imply that

this moment has to be

^ln&Q5
1

anD
. ~26!

If we estimatelnc
in Eq. ~24! by its mean~26!, we would

write

lnc
;1/nc→nC;Q2. ~27!
l
-

for
r

-

s

of

-

ThusD/(D21)52 or D52. Even though we get an over
estimate, this is a good indication that we are on the ri
track. The reason for the overestimate is that we neglec
the fluctuations that sometimes lead toln much larger than
the mean. We expect a crossover to occur when thelargest
Alk are smaller than 2p/Q, since it is enough to have a few
largelk to cause a reparametrization that will ruin a pote
tial periodic orbit. We thus seek a condition

ln
max[max$lk%k5n2Q

n '
4p2

Q2
. ~28!

We note thatlk is an erratic function ofk, and therefore the
condition ~28! can be met more than once in a given ser
lk . In Fig. 19 we show two log-log plots ofnc computed
from the value ofn for which Aln

max52p/Q, plotted as a
function of Q5Fm .

The crossover valuenc was computed in two differen
ways. In circles we exhibit the values obtained from meas
ing whenAln

max52p/Q for the first time, and in squares w
exhibit the values obtained fromAln

max52p/Q for the last
time. Computing the slopes by linear regression and ave
ing between them we find the scaling law

nc;Q2.1760.03. ~29!

Comparing with Eqs.~19!, ~22! we get an estimate forD
51.8660.03, in excellent agreement with the determinati
of the dimension byF1

(n) .
We note in passing thatln

max can be assigned a genera
ized dimensionD` in the language of Hentschel and Proca
cia @16#. Define

FIG. 19. The measured crossover valuesnc as a function ofQ in
log-log plots. In dots are the values ofn for which the condition
ln

max54p2/Q2 was met for the first time, in squares for the la
time.
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^ln
q&Q[

1

Q (
k5n2Q

n

lk
q . ~30!

From Ref.@10# the precise scaling law is

ln
max5 lim

q→`
^ln

q&Q
1/q;n22D` /D. ~31!

Comparing with Eq.~22! we conclude that in this case the
exists a scaling relation

D`5D21. ~32!

Such a scaling relation was conjectured by Turkevich a
Scher for DLA @17# ~of course with a differentD andD`).
While there are severe doubts about the correctness of
conjecture for DLA @14#, we point out that in our case i
follows directly from elementary considerations.

The period doubling itinerary. Even though the period
doubling itinerary leads to a cluster whose fractal dimens
differs from the quadratic irrational windings, we show he
that the ideas presented above pertain equally to this gro
pattern. Instead of rational approximants we use here, n
rally, 2n-periodic orbits which are obtained by cutting th
itinerary ~17! after 2n iterations and repeating it periodically
The crossover from fractal to one-dimensional growth
seen also in this case, and we can use it in a very similar
to identify the crucial exponent that determines the dim
sion of the asymptotic cluster. Indeed, the whole set of id
developed above repeats verbatim by changingQ with 2n.
What remains is to findln

max as a function ofn.
In Fig. 20 we show the data collapse obtained as in F

18 for the quasiperiodic analog. We show nine different d
sets with periodic itineraries of periods 32, 64, and 128 a
Al0 values of 0.22, 0.44, and 0.88. The scaling function
these data sets is plotted as a function ofu5n0.44/Q, where
the exponent is computed fromD51.78. It is noteworthy
that the scaling function obtained appears identical to
scaling functionf (u) for the quasiperiodic family. For com
parison we added in Fig. 20 also one curve from the qu
periodic class, and it appears indistinguishable from the r

FIG. 20. Scaling behavior for nine separate data sets for clus
grown with truncated period doubling itineraries, in addition to o
data set of the quasiperiodic class. See text for details.
d
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n
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The conclusion from this data collapse is that the mec
nism governing the crossover from fractal to on
dimensional growth phases here is the same as the one
cussed above for the quasiperiodic itineraries. The differe
between the dimensions of the period doubling cluster
the quasiperiodic cluster must lie in the different numeri
value of the exponent characterizingln

max as a function ofn.
In this case the natural averaging cycles are of lengthQ
52n. Figure 21 is the analog of Fig. 19 for the period do
bling itinerary, where the critical valuenc was estimated
from the first time thatAln

max became smaller than 2p/2n.
The linear regression provides us with the scaling law

nc;Q2.3360.1. ~33!

Computing D we find D51.7560.05 in good agreemen
with the numerical estimate fromF1

(n) .

VII. SUMMARY AND THE ROAD AHEAD

The main points of this paper are as follows. The itera
conformal maps algorithm for fractal growth patterns offer
convenient way to introduce a large number of determinis
growth models with highly nontrivial fractal geometry. Itin
eraries with irrational winding numbers generate frac
growth patterns. We proposed that all the quadratic irra
nals produce clusters of the same fractal dimension, in s
of different appearance. By considering a series of ratio
approximants we could produce a scaling theory of the gro
ing clusters, achieving data collapse for all values ofn, l0,
andP/Q. Identifying the mechanism for the crossover fro
fractal to one-dimensional growth phases we could pinpo
the exponent that determines the fractal dimensionD. This
exponent characterizes then dependence of the extremal va

rs

FIG. 21. The measured crossover valuesnc as a function ofQ
52n in a log-log plot. Shown are the values ofn for which the
conditionln

max5(2p/2n)2 was met for the first time.
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ues ofln . The mechanism appears general; itineraries le
ing to different cluster dimensions, such as the period d
bling itinerary ~17! and its truncated versions, can b
understood in the same way. The scaling function~18! and
the scaling relation~22! are general, but the exponenta
changes. Its determination by the scaling ofln

max Eq. ~28! is,
however, general. We note that all the numerical tests p
in favor of this scenario, and in our opinion rule out a val
D52 for the clusters discussed above. The only way to
two-dimensional growth, as shown above, is if the distrib
tion of ln does not multiscale, i.e., allDq are the same, and
the scaling ofln

max identifies with the scaling of the averag
of ln .

Nevertheless, we point out that the crucial step in o
scenario, the determination of the exponenta in Eq. ~19!,
e

ys

ys

. A
d-
-

nt

et
-

r

was achieved numerically. The scaling theory presen
above has a strong flavor of a renormalization group
proach. It appears that such an underlying theory may ha
low codimension, maybe with one important exponent,
one characterizing the rate of crossover of the rational
proximants to the irrational limit. The search of such a theo
appears to be an important task for the near future.
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